Preferred Device

Sensitive Gate Silicon Controlled Rectifiers

Reverse Blocking Thyristors

PNPN devices designed for high volume, low cost consumer applications such as temperature, light and speed control; process and remote control; and warning systems where reliability of operation is critical.

Features


- Pb–Free Package is Available
- Small Size
- Passivated Die Surface for Reliability and Uniformity
- Low Level Triggering and Holding Characteristics
- Recommend Electrical Replacement for C106
- Surface Mount Package Case 369C
- To Obtain "DPAK" in Straight Lead Version (Shipped in Sleeves): - Add '1' Suffix to Device Number, i.e., MCR706A1
- Epoxy Meets UL 94, V-0 @ 0.125 in
- ESD Ratings: Human Body Model, 3B > 8000 V Machine Model, C > 400 V

ON Semiconductor®

http://onsemi.com

SCRs 4.0 AMPERES RMS 100 – 600 VOLTS

MARKING DIAGRAMS

Y = Year WW = Work Week x = 3, 6, or 8

PIN ASSIGNMENT			
1 Gate			
2	Anode		
3	Cathode		
4 Anode			

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet.

Preferred devices are recommended choices for future use and best overall value.

MAXIMUM RATINGS (T_J = $25^{\circ}C$ unless otherwise noted)

Rating	Symbol	Max	Unit
MCI	VDRM, R703A V _{RRM} R706A R708A	100 400 600	V
MCI	V _{RSM} R703A R706A R708A	150 450 650	V
On–State RMS Current (180° Conduction Angles; T _C = 90°C)	I _{T(RMS)}	4.0	A
Average On-State Current (180° Conduction Angles) $T_C = -40$ to +90°C $T_C = +100°C$	I _{T(AV)}	2.6 1.6	A
Non-Repetitive Surge Current (1/2 Sine Wave, 60 Hz, $T_J = 110^{\circ}$ C) (1/2 Sine Wave, 1.5 ms, $T_J = 110^{\circ}$ C)	I _{TSM}	25 35	A
Circuit Fusing (t = 8.3 msec)	l ² t	2.6	A ² sec
Forward Peak Gate Power (Pulse Width \leq 1.0 µsec, T _C = 90°C)	P _{GM}	0.5	W
Forward Average Gate Power $(t = 8.3 \text{ msec}, T_C = 90^{\circ}\text{C})$	P _{G(AV)}	0.1	W
Forward Peak Gate Current (Pulse Width \leq 1.0 µsec, T _C = 90°C)	I _{GM}	0.2	A
Operating Junction Temperature Range	TJ	-40 to +110	°C
Storage Temperature Range	T _{stg}	-40 to +150	°C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

THERMAL CHARACTERISTICS

Characteristic		Max	Unit
Thermal Resistance, Junction-to-Case	$R_{ extsf{ heta}JC}$	8.33	°C/W
Thermal Resistance, Junction-to-Ambient (Note 2)	R_{\thetaJA}	80	°C/W
Maximum Lead Temperature for Soldering Purposes 1/8" from Case for 10 Seconds	ΤL	260	°C

2. Case 369C when surface mounted on minimum pad sizes recommended.

ELECTRICAL CHARACTERISTICS (T_C = 25° C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit	
DFF CHARACTERISTICS		-				-
Peak Repetitive Forward or Reverse Blocking Curre $(V_{AK} = Rated V_{DRM} \text{ or } V_{RRM}; R_{GK} = 1 \text{ K}\Omega)$	ent T _C = 25°C T _C = 110°C	I _{DRM} , I _{RRM}			10 200	μΑ
ON CHARACTERISTICS		-				-
Peak Forward "On" Voltage (I _{TM} = 8.2 A Peak, Pulse Width = 1 to 2 ms, 2% D	Outy Cycle)	V _{TM}	_	-	2.2	V
Gate Trigger Current (Continuous dc) (Note 3) (V _{AK} = 12 Vdc, R _L = 24 Ohms)	$T_C = 25^{\circ}C$ $T_C = -40^{\circ}C$	I _{GT}		25 -	75 300	μΑ
Gate Trigger Voltage (Continuous dc) (Note 3) $(V_{AK} = 12 \text{ Vdc}, R_L = 24 \text{ Ohms})$	$T_{C} = 25^{\circ}C$ $T_{C} = -40^{\circ}C$	V _{GT}	-	-	0.8 1.0	V
Gate Non-Trigger Voltage (Note 3) (V_{AK} = 12 Vdc, R_L = 100 Ohms, T_C = 110°C)		V _{GD}	0.2	_	—	V
Holding Current (V _{AK} = 12 Vdc, Gate Open) (Initiating Current = 200 mA)	$T_C = 25^{\circ}C$ $T_C = -40^{\circ}C$	Чн			5.0 10	mA
Peak Reverse Gate Blocking Voltage $(I_{GR} = 10 \ \mu A)$		V _{RGM}	10	12.5	18	V
Peak Reverse Gate Blocking Current (V _{GR} = 10 V)		I _{RGM}	_	-	1.2	μΑ
Total Turn-On Time (Source Voltage = 12 V, $R_S = 6 k\Omega$) ($I_{TM} = 8.2 A$, $I_{GT} = 2 mA$, Rated V_{DRM}) (Rise Time = 20 ns, Pulse Width = 10 µs)		t _{gt}	_	2.0	_	μs
DYNAMIC CHARACTERISTICS						
Critical Rate of Rise of Off–State Voltage $(V_D = Rated V_{DRM}, R_{GK} = 1 \text{ k}\Omega, \text{ Exponential Wave}$ $T_C = 110^{\circ}C)$	veform,	dv/dt	-	10	-	V/µs
Repetitive Critical Rate of Rise of On–State Current (Cf = 60 Hz, I_{PK} = 30 A, PW = 100 μ s, diG/dt = 1		di/dt	-	-	100	A/μs

3. R_{GK} current not included in measurement.

ORDERING INFORMATION

Device	Package Type	Package	Shipping [†]
MCR703AT4	DPAK	369C	2500 Tape & Reel
MCR706AT4	DPAK	369C	2500 Tape & Reel
MCR706AT4G	DPAK (Pb–Free)	369C	2500 Tape & Reel
MCR708A	DPAK	369C	2500 Tape & Reel
MCR708A1	DPAK-3	369D	75 Units / Rail
MCR708AT4	DPAK	369C	2500 Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Voltage Current Characteristic of SCR

			+ Cu	irrent	Anod	le +
Sym	bol Parameter			└ ◄─∨ _{тм}		
V _{DRM}				↓ VIM		
I _{DRM}	Peak Forward Blocking Current		on state	<u> </u> .		
V _{RRM}		I _{RRM} at V _{RRM}	1	<u> </u>		
I _{RRM}	Peak Reverse Blocking Current					<u>د</u>
V _{TM}	Peak On–State Voltage		4		· /	+ Voltage
Ι _Η	Holding Current	Reverse B	locking Region		I _{DRM} at V _E	-
			f state) lanche Region		Blocking Regi	on
		P(AV), AVERAGE POWER DISSIPATION (WATTS) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				
	30°C	ZO 4.0				30°C 60°C
105	00°C					90°C
		; SG 3.0				120°C
	180°C				\//	180°C
	DC	on 2.0				DC
100		GE I		XI.	\sim	
		He 1.0		I		
), AV				
95						
0	1.0 2.0 3.0 4.0	5.0	0 1.0	2.0	3.0	4.0 5.0
	I _{T(AV)} , AVERAGE ON-STATE CURRENT (AMPS)		I _{T(AV)} , AVE	RAGE ON-ST	ATE CURRENT	(AMPS)
	Figure 1. Average Current Derating		Figure 2.	On-State	Power Diss	sipation
100	Typical @ T _J = 25°C	<u><u> </u></u>				
Ē						
	Maximum @ T _J = 110°C	RMA				
10		NO N			Z ₀ JC($\mathbf{t}_{t} = \mathbf{R}_{\Theta \mathbf{JC}(t)} \bullet \mathbf{r}(t)$
Ĩ		NCE				
		TS 0.1				
	Maximum @ T _J = 25°C	HESI				
1.0		(t), TRANSIENT RESISTANCE (NORMALIZED)				
		TRA				
0.1		Ê 0.01				
0.5	1.0 1.5 2.0 2.5 3.0 3.5 4.0		0.1 1.0	10	100	1000 10,000
	V_{T} , INSTANTANEOUS ON-STATE VOLTAGE (VOLTS)			t, TIME	(ms)	
	Figure 3. On–State Characteristics		Figure 4.	Fransient ⁻	Thermal Re	sponse

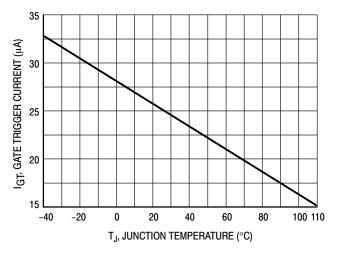


Figure 5. Typical Gate Trigger Current versus Junction Temperature

Figure 6. Typical Gate Trigger Voltage versus Junction Temperature

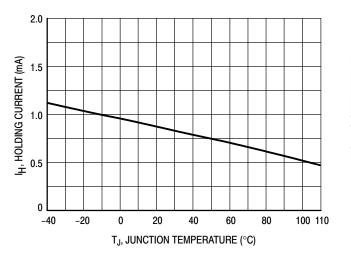


Figure 7. Typical Holding Current versus Junction Temperature

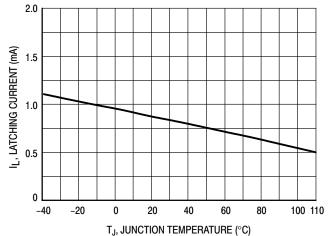
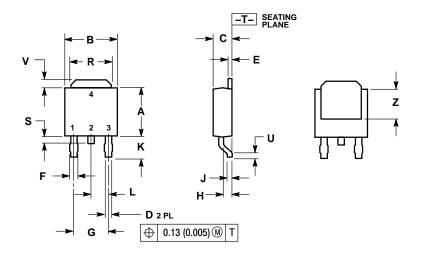
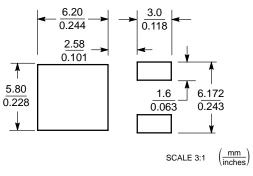



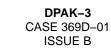
Figure 8. Typical Latching Current versus Junction Temperature

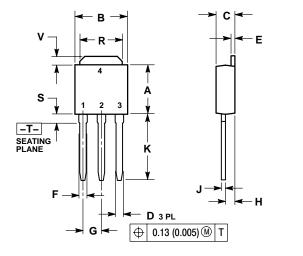
PACKAGE DIMENSIONS



NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.

	INC	HES	MILLIN	IETERS	
DIM	MIN MAX		MIN	MAX	
Α	0.235	0.245	5.97	6.22	
В	0.250	0.265	6.35	6.73	
С	0.086	0.094	2.19	2.38	
D	0.027	0.035	0.69	0.88	
Е	0.018	0.023	0.46	0.58	
F	0.037	0.045	0.94	1.14	
G	0.180 BSC		4.58 BSC		
Н	0.034	0.040	0.87	1.01	
J	0.018	0.023	0.46	0.58	
κ	0.102	0.114	2.60	2.89	
L	0.090	BSC	2.29	BSC	
R	0.180	0.215	4.57	5.45	
S	0.025	0.040	0.63	1.01	
U	0.020		0.51		
V	0.035	0.050	0.89	1.27	
Ζ	0.155		3.93		


STYLE 2: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN


SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.235	0.245	5.97	6.35
В	0.250	0.265	6.35	6.73
С	0.086	0.094	2.19	2.38
D	0.027	0.035	0.69	0.88
Е	0.018	0.023	0.46	0.58
F	0.037	0.045	0.94	1.14
G	0.090	0.090 BSC 2.29 BSC		
Н	0.034	0.040	0.87	1.01
J	0.018	0.023	0.46	0.58
κ	0.350	0.380	8.89	9.65
R	0.180	0.215	4.45	5.45
S	0.025	0.040	0.63	1.01
٧	0.035	0.050	0.89	1.27
Ζ	0.155		3.93	

STYLE 2: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN

http://onsemi.com 7

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer applications by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications in the body or other application in which the BSCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use patent as SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850 ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.